The Blow-Up Rate for Strongly Perturbed Semilinear Wave Equations in the Conformal Case
نویسندگان
چکیده
منابع مشابه
Blow up for the Semilinear Wave Equation in Schwarzschild Metric
We study the semilinear wave equation in Schwarzschild metric (3 + 1 dimensional space time). First, we establish that the problem is locally well posed in H for any σ > 1; then we prove the blow up of the solution for every p > 1 and non negative initial data. The work is dedicated to prof. Yvonne Choquet Bruhat in occasion of her 80th year.
متن کاملBlow-up at the Boundary for Degenerate Semilinear Parabolic Equations
This paper concerns a superlinear parabolic equation, degenerate in the time derivative. It is shown that the solution may blow up in finite time. Moreover it is proved that for a large class of initial data blow-up occurs at the boundary of the domain when the nonlinearity is no worse than quadratic. Various estimates are obtained which determine the asymptotic behaviour near the blow-up. The ...
متن کاملthe test for adverse selection in life insurance market: the case of mellat insurance company
انتخاب نامساعد یکی از مشکلات اساسی در صنعت بیمه است. که ابتدا در سال 1960، توسط روتشیلد واستیگلیتز مورد بحث ومطالعه قرار گرفت ازآن موقع تاکنون بسیاری از پژوهشگران مدل های مختلفی را برای تجزیه و تحلیل تقاضا برای صنعت بیمه عمر که تماما ناشی از عدم قطعیت در این صنعت میباشد انجام داده اند .وهدف از آن پیدا کردن شرایطی است که تحت آن شرایط انتخاب یا کنار گذاشتن یک بیمه گزار به نفع و یا زیان شرکت بیمه ...
15 صفحه اولOn Blow-up at Space Infinity for Semilinear Heat Equations
We are interested in solutions of semilinear heat equations which blow up at space infinity. In [7], we considered a nonnegative blowing up solution of ut = ∆u+ u, x ∈ R, t > 0 with initial data u0 satisfying 0 ≤ u0(x) ≤ M, u0 ≡ M and lim |x|→∞0 = M, where p > 1 and M > 0 is a constant. We proved in [7] that the solution u blows up exactly at the blow-up time for the spatially constant solution...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Physics, Analysis and Geometry
سال: 2015
ISSN: 1385-0172,1572-9656
DOI: 10.1007/s11040-015-9183-8